
MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 89-532
May 1989

The J-Machine: A Fine-Grain Concurrent Computer

William J. Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen,
Michael Larivee, Rich Lethin, Peter Nuth, Scott Wills, Paul Carrick, and Greg Fyler

1A

Approved for puh,ic rleas/.

Abstract Ditx iatf n U ti.ted...

The J-Machine s a fine-grain concurrent computer that provides low-overhead jrimitive
mechanisms for !ommunication, synchronization, and translation. Communicati)n
mechanisms are provided that permit a node to send a message to any other nod in the
machine in < 2p s. On message arrival, a task is created and dispatched in < 1 s. A
translation mechanism supports a global virtual address space. These mechanisms
efficiently support most proposed models of concurrent computation. The hardware is an
ensemble of up to 65,536 nodes each containing a 36-bit processor, 4K 36-bit words of
memory, and a router. The nodes are connected by a high-speed 3-D mesh network. This
design was chosen to make the most efficient use of available chip and board area.

SEP 0 5 1989

D

89 9 01035
Vi'OSystlel Massac hse-, Ca,,- ace Teieohone
Researc, C.n'e 1nsi u'E Massac J:.:! (617) 253-8138
Room 39-321 of Technoo, 02139

Acknowledgements

To appear in the IFIP Congress 89, San Francisco, CA, Aug./Sept. 1989. This
research was supported in part by the Defense Advanced Research Projects
Agency under contracts N00014-88-K-0738, N00014-87-K-0825, and N00014-85-
K-0124, by a National Science Foundation Presidential Young Investigator Award
with matching funds from General Electric Corporation and International
Business Machines Corporation, and in part by Intel Corporation.

Author Information

Dally: Artificial Intelligence Laboratory and the Laboratory for Computer
Science, Room NE43-417, MIT, Cambridge, MA 02139. (617) 253-6043.

Keen, Larivee, Lethin, and Fiske: Artificial Intelligence Laboratory and the
Laboratory for Computer Science, Room NE43-416, MIT, Cambridge,
MA 02139. (617) 253-8473.

Chien, Horwat, Nuth, and Wills: Artificial Intelligence Laboratory and the
Laboratory for Computer Science, Room NE43-415, MIT, Cambridge,
MA 02139. (617) 253-6048.

Carrick & Fyler: Intel Corporation, Santa Clara, CA 97006.

Copyrightc 1989 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy
is for private circulation only and may not be further copied or distributed, except
for government purposes, if the paper acknowledges U. S. Government sponsor-
ship. References to this work should be either to the published version, if any, or
in the form "private communication." For information about the ideas expressed
herein, contact the author directly. For information about this series, contact
Microsystems Research Center, Room 39-321, MIT, Cambridge, MA 02139;
(617) 253-8138.

The J-Machine: A Fine-Grain Concurrent Computer

William J. Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen, Michael
Larivee, Rich Lethin, Peter Nuth, Scott Wills

Artificial Intelligence Laboratory
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Paul Carrick, Greg Fyler Intel Corporation
Santa Clara, CA 97006

Abstract

The J-Machine is a fine-grain concurrent computer that provides low-overhead primitive mech-
anisms for communication, synchronization, and translation. Communication mechanisms are
provided that permit a node to send a message to any other node in the machine in < 2ps. On
message arrival, a task is created and dispatched in < ljis. A translation mechanism supports
a global virtual address space. These mechanisms efficiently support most proposed nodels of
concurrei t computation. The hardware is an ensemble of up to 65,536 nodes each containing a
36-bit processor, 4K 36-bit words of memory, and a router. The nodes are connected by a high-
speed 3-D mesh network. This design was chosen to make the most efficient use of available
chip and board area.

1 Introduction

Overview

The J-Machine is a distributed-memory, MIMD, concurrent computer [11]. It provides primitive
mechanisms for communication, synchronization, and translation. Communication mechanisms
are provided that permit a node to send a message to any other node in the machine in < 21s. No
processing resources on intermediate nodes are consumed and buffer memory is automatically
allocated on the receiving node. The synchronization mechanisms schedule and dispatch a task
in < lts on message arrival and suspend tasks that attempt to reference data that is not yet
available. The translation mechanism maintains bindings between arbitrary names and values. 0
It is used to perform address translation to support a global virtual address space. C

These mechanisms have been selected to be both general and amenable to efficient hardware im
plementation. They efficiently support many parallel models of computation including actors[l 1.

U'The research described in this paper was supported in part by the Defense Advanced Research Proje(t,
Agency under contracts N00014-88K-0738, N00014-87KC-0825. and N000]4-85-K-0124, in part by a National
Scierce Foundation Presidential Young Investigator Award with matching funds from General Electric Corpor. .
tio and International Business Machines Corporation. and in part by Intel Corporation

1

dataflow[16], and communicating processes[19]. To support fine-grain concurrent programming
systems, the mechanisms are designed to efficiently handle smal objects (8 words) and small
tasks (20 instructions).

The hardware is an ensemble of up to 65,536 message-driven processors (MDPs)[9]. This limit
is set by the addressability of the router and the bandwidth of the network. Each node contains
a 36-bit processor, 4K. 36-bit words of memory, and a communications controller (router). The
nodes are connected by a high-speed, three-dimensional mesh network. Each network channel
has a bandwidth of 45OMbits/s. The first medium-scale prototype will be a 4096-node system.

This design was chosen to make the most efficient use of available chip and board area. Pack-
aging a small amount of memory on each node gives us an extremely high memory bandwidth
(3Gbits/s per chip or 200Tbits/s in a fully populated system). Memory consumes most or the
chip area; from one point of view, the system is a memory with processors added to each node
to improve bandwidth for local operations. The fast communication and global address space
prevent the small local memories from limiting programmability or performance. The 3-D net-
work gives the highest throughput and lowest latency for a given wire density[7][13]. It allows
the processing nodes to be packed densely and results in uniformly short wires.

The J-Machine project is driven by the following goals:

" To identify and implement simple hardware mechanisms for communication, synchlo-
nization, and naming suitable for supporting a broad range of concurrent programming
models.

* To reduce the overhead associated with these mechanisms to a few instruction times so
that fine-grain programs may be efficiently executed.

" To design an area-efficient machine: one that maximizes performance for a given amount
of chip and wiring area.

Grain Size

The J-Machine is a fine-grain concurrent computer in that (i, designed to efficiently support
fine-grain programs and (2) it is composed of fine-grain processing nodes [14].

The grain size of a program refers to the size of the tasks and messages that make up the
program. Coarse-grain programs have a few long (- 105 instruction) tasks, while fine-grain
programs have many short (: 20 instruction) tasks. With more tasks that can execute at a
given time - viz. more concurrency - fine-grain programs (in the absence of overhead) result
in faster solutions than coarse-grain programs.

The grain size of a machine refers to the physical size and the amount of memory in one
processing node. A coarse-grain processing node requires hundreds of chips (several boards)
and has ; 107 bytes of memory while fine-grain node fits on a single chip and has : 104 by t (-
of memory. Fine-grain nodes cost less and have less memory than coarse-grain nodes, however.

2

0
because so little silicon area is required to build a fast processor, they need not have slower
processors than coarse-grain nodes.

Background

The J-Machine builds on previous work in the design of message-passing and shared memory
machines. Like the Caltech Cosmic Cube [25], the Intel iPSC (211, the N-CUBE (231, and
the Ametek [2], each node of the J-Machine has a local memory and communicates with other
nodes by passing messages. Because of its low overhead, the J-Machine can exploit concurrency
at a much finer grain than these early message passing computers. Delivering a message and
dispatching a task in response to the message arrival takes < 3pus on the J-Machine as opposed
to 5ms on an iPSC. Like the BBN Butterfly [4] and the IBM RP3 [24] the J-Machine provides
a global virtual address space. The same IDs (virtual addresses) are used to reference on and
off node objects. Like the InMOS transputer [20] and the Caltech MOSAIC P21 a J-Machine
node is a single chip processing element integrating a processor, memory, and a communication
unit.

The J-Machine is unique in that it extends these previous efforts with efficient primitive mech-
anisms for communication, synchronization and naming.

Summary

The remainder of this paper describes the J-Macine in more detail Section 2 gives an overview
of the system describing how the network and processor work together to support concurrent
programming systems. The network is described in Section 3. Section 4 deals with the message
driven processor and the mechanisms it provides for concurrency.

2 System Architecti-re

The J-Machine consists of an ensemble of (up to b4K) MDP-based processing nodes connected
by a three-dimensional mesh network. The network delivers messages between nodes. All
routing and flow-control are handled in the network. The network consists of a communica-
tion controller or router on each node [6][10][17], and wires connecting these routers to their
neighbors in each of the three physical dimensions.

Each node contains a memory, a processor, and a communication controller. The communica-
tion controller is logically part of the network but physically part of the node. The 4K-word by
36-bit memory is used to store objects and system tables. Each word of the memory contain.
a 32-bit data item and a 4-bit tag. In addition to the usual uses of tags to support dynamic
typing and garbage collection, special tags are provided to synchronize on data presence and to
indicate if an address is local or remote. Memory accesses to write messages or read code ar,
made a row (144bits) at a time to improve memory bandwidth. A part of the memory can I,,

3

0

Node 124 Node 262

Conext 37
pit

Node 124
Conexe 137

Node 124 Node 262

rote Su mt. (oContext 37.

The processor isMessagedrvn tecu e sradsse oe r esos tomesage

Node 124

Sl1ot 3

Reply.5

Figure 1: (a) A task executing in Context 37 on Node 124 sends a message to object pointi
requesting that it perform the Sum method. (b) A reply message is returned to Context 37.

mapped as a set associative cache. This cache is used to implement the processor's translation
mechanism.

The processor is message driven. It executes user and system code in response to messages

arriving over the network. A conventional processor is instruction-driven in that it fetches
an instruction from memory and dispatches a control sequence to execute the instruction. A
message-driven processor receives a message from the network and dispatches a control sequence
to execute the task specified by the message. The MDP uses an instruction sequence to execute
a message. Hardware mechanisms for communication, synchronization, and translation are
provided to accelerate the dispatch operation and the subsequent task execution.

To support communication over the network, the MDP provides a SEND instruction and performs
automatic buffering of arriving messages. To synchronize execution with arriving messages, a
primitive dispatch operation is provided that eliminates scheduling overhead. To synchronize
on data, tags are provided to support futures. A general translation mechanism uses a set
associative cache in the node memory to maintainl arbitrary bindings.

4

0
To see how the system functions together, consider the example shown in Figure 1. In Figure la,
A task executing in Context 37 on Node 124 sends a Sum message to an object, pointl. This
message requests that the object sum its two fields x and y. The sending node translates the
object name for pointi (a unique 32-bit pattern) into a node address, Node 262 (a 16-bit
integer), using the MDP translation mechanism. A sequence of MDP SEND instructions is then
used to inject the message into the network. The message includes (1) the node address of
pointl (Node 262), (2) the object name of pointl, (3) the message name or selector, Sum, and
(4) a continuation (the node and ID of the sender's context and the slot into which the reply
should be stored). The sending task continues to execute until it needs the result of the Sum
message.

The network delivers the injected message to Node 262. At this node, the MDP buffering
mechanism allocates storage for the message and sequences the message off the network into
the node's memory. When the node completes its current task (and any other tasks ahead in
the queue), the MDP dispatch mecl'anism creates a new task in response to the message. This
task translates the ID of pointI into a segment descriptor for the object, adds the x and y fields
of the object together, and uses a sequence of SEND instructions to inject a message containing
the sum into the network. As shown in Figure ib, this message contains (1) the node address
of the sender's context, (2) the ID of the sender's context, (3) the context slot awaiting the
reply, and (4) the result. This task then terminates.
The network delivers the reply message to Node 124 where it is buffered and eventually dis-
patched to create a task. This task translates the ID for Context 37 into a segment descriptor.

The reply value is stored into the specified slot of this context. The sending task is then resumed
by loading its context from this segment.

The round trip delay for this example message send and reply is = 5/Ss. The difficulty in building
a concurrent system the scale of the J-machine is not developing the mechanisms conceptually.
It is implementing them efficiently so the overhead of accessing remote nodes is made small
enough to permit the execution of fine-grain programs.

In the following sections we will examine the implementation of each component of the J-
Machine system.

3 The Network

The J-Machine network has a 3-D mesh topology as shown in Figure 2. Each node is located by
a three coordinate address (x, y, and z). A node is connected to its six neighbors (if they exist)
that have addresses differing in only one coordinate by ±1. All connections are bidirectional
channels. Each channel requires 15 wires to carry 9-data bits, one tail bit, and five control lines
[10]. Addressing is provided to support up to a 32 x 32 x 64 cube of 65536 nodes. The prototype
will be built as a 16 x 16 x 16 cube of 4096 nodes. For a machine, such as the J-Machine where
wire density is a limiting factor, this topology has been shown to give the lowest latency and
highest throughput for a given wire density [7][13] .

The network topology is not visible to the programmer. The latency of sending a message from

5

0

Figure 2: The J-Machine Network is a 3-D mesh or k-ary 3-cube (a 3x 3x3 mesh is shown here).
Messages injected into the network at any node are routed to the destination node specified in
the head of the message. All routing and flow control is performed in the network.

any node, i, to any other node, j, is sufficiently low that the piugrammer sees the network as
a complete connection. Zero load network latency is given by

T = TdD + TcW. (1)

Where D is the distance (number of hops) the message must travel, L is the length of the
message in bits, and W is the width of the channel in bits. The network is expected to have a
propagation delay per stage, Td, of 20ns and a channel cycle time, T. of 20ns. With these times,
a six word (L =216 bit) message traversing half the network diameter (D = 24) has a latency of
960ns equally divided between the two components of latency [13]. An average message travels
one third of the network diameter for a latency of 800ns.

The network provides all end to end message delivery services. The sending node injects a
message containing the absolute address of the destination node. The network determines the
route of the message, and sequences each flit (flow-control digit) of the message over the route.
Flow control is performed as required to resolve contention and match channel rates. This flow
control is performed in a manner that is provably deadlock free[8].

There is no acknowledgement, error detection, or error correction on the network channels.
The network wires are all short, contained within a single physical cabinet, and operated at low
impedance. The error rate of a network channel is no higher than that of a properly terminated
signal in a conventional CPU.

4 The Message-Driven Processor

The message-driven processor (MDP) is a 36 bit single-cLip microcomputer specialized to tup"
ate efficiently in a multicomputer. [5][9][12). The MI)P chip includes the processor, a 41X,

6

ItI

Memory

Proc comm

Figure 3: The Message-Driven Processor chip incorporates a 36-bit processor, a 4K-word x
36-bit memory, and a router (described above).

by 36-bit memory, and a router (Figure 3). An on-chip memory controller with ECC permits
local memory to be expanded up to LM-words by adding external DRAM chips.

Other machines have combined processor, memory, and communications on a single chip [20] [221
(23]. The MDP extends this work by providing fast, primitive mechanisms for synchronization,
communication, and translation (naming) that allow the processor to efficiently support many
parallel models of computation. A fast network is of little use if very large overheads are
required to initiate and receive messages at the processing nodes. The MDP's mechanisms
reduce the overhead of interacting with other processors over the network to levels that make
fine-grain parallelism efficient.

The following mechanisms are provided:

* Communication Mechanisms

- A SEND instruction injects messages into the network.

- Messages arriving from the network are automatically buffered in a circular queue.

* Synchronization Mechanisms

- A dispatch mechanism creates and schedules a task (thread of control and addressing
environment) to handle each arriving message.

- Tags for futures [31 synchronize tasks based on data dependencies.

• Translation

- ENTER and XLATE (translate) instructions make bindings between arbitrary 36-bit kLy
and data values (ENTER) and retrieve a value given the corresponding key (XLATE).

- Segmented memory management provides relocation and protection for data objects
stored in a node's memory.

SEND RO ; send net address
SEND2 R1,R2 ; header and receiver
SUD2E R3.[3,A3J ; selector and continuation - end meg.

Figure 4: MDP assembly code to send a 4 word message uses three variants of the SEND
instruction.

The processor is message driven in the sense that processing is performed in response to mes-
sages (via the dispatch mechanism). There is no receive instruction. A task is created for each
arriving message to handle that message. A computation is advanced (driven) by the messages
carrying tasks about the network.

4.1 Send Instruction

The MDP injects messages into the network using a send instruction that transmits one or two
words (at most one from memory) and optionally terminates the message. The first word of

the message is interpreted by the network as an absolute node address (in x,y format) and is
stripped off before delivery. The remainder of the message is transmitted without modification.
A typical message send is shown in Figure 4. The first instruction sends the absolute address of
the destination node (contained in RO). The second instruction sends two words of data (from
Ri and R2). The final instruction sends two additional words of data, one from R3, and one
from memory. The use of the SENDE instruction marks the end of the message and causes it
to be transmitted into the network. In a Concurrent Smalltalk message [15), the first word is
a message header, the second specifies the receiver, the third word is the selector, subsequent
words contain arguments, and the final word is a continuation. This sequence executes in 4
clock cycles (200ns).

A first-in-first-out (FIFO) buff-, is used to match the speed of message transmission to the
network. In some cases, the MDP cannot send message words as fast as the network can
transmit them. Without a buffer, bubbles (absence of words) would be injected into the network
pipeline degrading performance. The SEND instruction loads one or two words into the buffer.
When the message is complete or the eight-word buffer is full, the contents of the buffer are

launched into the network.

Previous concurrent computers have used direct-memory access (DMA) or I/O channels to inject

messages into the network. First an instruction sequence composed a message in memory. DMA
registers or channel command words were then set up to initiate sending. Finally, the DMA
controller transferred the words from the memory into the network. This approach to message
sending is too slow for two reasons. First, the entire message must be transferred across the
memory interface twice, once to compose it in memory and a second time to transfer it into
the network. Second, for very short messages, the time required to set up the DMA control
registers or I/O channel command words often exceeds the time to simply send the messag,

into the network.

I | | |

4.2 Message Reception

The MDP maintauis two message/scheduling queues (one for each priority level) in its on-chip
memory. The queues are implemented as circular buffers. As messages arrive over the network,
they are buffered in the appropriate queue. To improve memory bandwidth, messages are
enqieued by rows. Incoming message words are accumulated in a row buffer until the row
uuffer is filled or the message is complete. The row buffer is then written to memory.

It is important that the queue have sufficient performance to accept words from the network at
the same rate at which they arrive. Otherwise, messages would backup into the network causing
congestion. The queue row buffers in combination with hardware update of queue pointers allow
enqueuing to proceed using one memory cycle for each four words received. Thus a program
can execute in parallel with message reception with little loss of memory bandwidth.

Providing hardware support for allocation of memory in a circular buffer on a multicomputer is
analogous to the support provided for allocation of memory in push-down stacks on a unipro-
cessor. Each message stored in the MDP message queue represents a method activation much
as each stack frame allocated on a push-down stack represents a procedure activation.

*4.3 Dispatch

Each message in the qdeues of an MDP rt.presents a task that is ready to, run. When the
message reaches the head of the queue, a task is created to handle the message. At any
time, the MDP is executing the task associated with the first message in the highest priority
non-empty queue. If both queues are empty, the MDP is idle - viz., executing a background
task. Sending a message implicitly schedules a task on the destination node. This simple
two-priority scheduling mechanism removes the overhead associated with a software scheduler.
More sophisticated scheduling policies may be implemented on top of this substrate.

Messages become active either by arriving while the node is idle or executing at a lower priority,
or by being at the head of a queue when the preceding message suspends execution. When a
message becomes active a task is created to handle it. Task creation, changing the thread of
control and creating a new addressing environment, are performed in one clock cycle as shown
in Figure 5. Every message header contains a message opcode and the message length. The
message opcode is loaded into the IP to start a new thread of control. The length field is used
along with the queue head to create a message segment descriptor that represents the initial
addressing environment for the task. The message handler code may open additional segments
by translating object IDs in the message into segment descriptors.

No state is saved when a task is created. If a task is preempting lower priority execution, it
executes in a separate set of registers. If a task, A, becomes active when an earlier task, B, at
the same priority suspends, B is responsible for saving its live state before suspending.

The dispatch mechanism is used directly to process messages requiring low latency (e.g., com-
bining and forwarding). Other messages (e.g.. remote procedure call) specify a handler that
locates the required method (using the translation mechanism described below) and then trans-

9

Segment Message Queue
Descnptor

0H - E3 message-process

Message
~Header

Figure 5: Message dispatch. In one clock cycle, a new task is created by (1) setting the IP to
change the thread of control and (2) creating a message segment to provide the initial addressing
environment.

MOVE [1,A3],RO ; get method id
XLATE RO,AO ; translate to segment descriptor
LDIP INITIALIP ; transfer control to method

Figure 6: MDP assembly code for the CALL message.

fers control to it.

For example, a remote procedure call message is handled by the call handler code as shown in
Figure 6. The execution of this handler is depicted in Figure 7. The first instruction gets the
method ID (offset 1 into the message segment reference by A3). The next instruction translates
this method ID into a segment descriptor for the method and places this descriptor in AO. The
final instruction transfers control to the method. The method code may then read in arguments
from the message queue. The argument object identifiers are translated to physical memory
base/length pairs using the translate instruction. If the method needs space to store local state,
it may create a context object. When the method has finished execution, or when it needs to
wait for a reply, it executes a SUSPEND instruction passing control to the next message.

10

Memory

F : eMessage

~Call
Routine

tlceau nArgument

Me
Object

Method
p.Code

(Context

Figure 7: The CALL message invokes a method by translating the method identifier to find the
code, creating a context (if necessary) to hold local state, and translating argument identifiers
to locate arguments.

4.4 Synchronization with Tags

Every register and memory location in the MDP includes a 4-bit tag that indicates the type
of data occupying the location. The MDP uses tags for synchronization on data availability in
addition to their conventional uses for dynamic typing and run-time type checking. Two tags
are provided for synchronization: future, and c-future. A future tag is used to identify a
named placeholder for data that is not yet available [3]. Applying a strict operator to a future
causes a fault. A future can, however, be copied without faulting. A c-future tag identifies a
cell awaiting data. Applying any operator to a c-future causes a fault. As they are unnamed
placeholders, they cannot be copied.

The c-future tag is used to suspend a task if it attempts to access data that has not yet
arrived from a remote node. When a task sends a message requesting a reply, it marks the
cell that will hold the reply as a c-future. Any attempt to reference the reply before it is
available will fault and suspend the task. When the reply arrives, it overwrites the c-future
and resumes the task if it was suspended. For example, when the task executing in Context
37 in Figure 1 sends the Sum message, it marks Slot 3 of its context as a c-future. The reply
mebsage overwrites Slot 3 to indicate data presence.

The future tag is used to implement named futures as in Multilisp (18]. Futures are more
general than c-futures in that they can be copied. However, they axe much more etpensive
than c-futures. A memory area and a name must be allocated for each futur generated.

4.5 Translation

The MDP is an experiment in unifying shared-memory and message-passing parallel computers.
Shared-memory machines provide a uniform global name space (address space) that allows
processing elements to access data regardless of its location. Message-passing machines perform
communication and synchronization via node-to-node messages. These two concepts are not
mutually exclusive. The MDP provides a virtual addressing mechanism intended to support a
global name space while using an execution mechanism based on message passing.

The MDP implements a global virtual address space using a general translation mechanism.
The MDP memory allows both indexed and set-associative access. By building comparators
into the column multiplexer of the on-chip RAM, we are able to provide set-associative access
with only a small increase in the size of the RAM's peripheral circuitry.

The translation mechanism is exposed to the programmer with the ENTER and XLATE instruc-
tions. FNTER Ra,Rb associates the contents of Ra (the key) with the contents of Rb (the data).
The association is made on the full 36 bits of the key so that tags may be used to distinguish
different keys. XLATE Ra,Rb looks up the data associated with the contents of Ra and stores this
data in Rb. The instruction faults if the lookup misses. This mechanism is used by our system
code to cache ID to segment descriptor (virtual to physical) translations, to cache ID to node
number (virtual to physical) translatior, and to cache class/selector to segment descriptor
(method lookup) translations.

12

Tags are an integral part of our addressing mechanism. An ID may translate into a segment
descriptor for a local object, or a node address for a global object. The tag allows us to
distinguish these two cases and a fault provides an efficient mechanism for the test. Tags also
allow us to distinguish an ID key from a class/selector key with the same bit pattern.

Most computers provide a set associative cache to accelerate translations. We have taken this
mechanism and exposed it in a pair of instructions that a systems programmer can use for
any translation. Providing this general mechanism gives us the freedom to experiment with
different address translation mechanisms and different uses of translation. We pay very little
for this flexibility since performance is limited by the number of memory accesses that must be
performed.

5 Conclusion

The J-Machine is a general purpose parallel computer. It provides general mechanisms for
communication, synchronization, and translation rather than hardwiring mechanisms for a
specific model of computation. These mechanisms efficiently support many proposed models
of computation. Using these mechanisms, the overhead of creating a task on a remote node is
reduced to a few microseconds. This low overhead permits concurrency to be exploited at a
fine-grain size.

The J-Machine is designed to make efficient use of silicon and wiring area. Each message
driven processing node is a jellybean part. It can be fabricated in the same technology used to
manufacture existing commodity semiconductor parts such as DRAMs. The network is designed
to make efficient use of wires so the machine can be packaged densely - with processing nodes
consuming most of the volume. There are no large wiring channels.

At the time of this writing (January 1988), the project is currently in the advanced design
stage. Message-level, instruction-level, and register-transfer-level simulators have been built to
test the J-Machine design. Prototype versions of JOSS and the CST compiler are operational.
Gate and transistor level schematics are in the process of being drawn. We expect to complete
the processing node chip design in late 1989 and have a prototype 3-Machine System running
in mid 1990.

Acknowledgement

The following MIT students have contributed to the work described here: Linda Chao, Soha Hassoun.
Paul Song, and Brian Totty.

I thank Tom Knight, Gerry Sussman, Steve Ward, Dave Gifford, Tom Leighton, and Carl Hewitt of
MIT. Chuck Seitz and Bill Athas of Caltech. and Mark Vestrich, Albert Yu, Justin Rattner, and George
Cox of Intel Corporation for many valuable suggestions comments, and advice.

13

References

[1] Agbs, Gal A., Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press,
Cambridge, MA, 1986.

[21 Ametek Computer Research Division, Series 2010 Product Description, 1987.

[3] Baker, H. ard Hewitt, C., "The Incremental Garbage Collection of Processes," ACM Conference
on AI and Prvgrumming Languages, Rochester, New York, August, 1977, pp. 55-59.

[4] BBN Advanced Computers, Inc., Butterfly Parallel Processor Overview, BBN Report No. 6148,
Msrch 1986.

[5) Daily, William 3., A VLSI Architecture for Concurrent Data Structures, Kluwer, Hingham, MA,
1987.

[6] Daily, William J. and Seitz, Charles L., "The Torus Routing Chip," J. Distributed Systems, Vol.
1, No. 3, 1986, pp. 187-196.

[7] Daily, William J. "Wire Efficient VLSI Multiprocessor Communication Networks," Proceedings
Stanford Conference on Advanced Research in VLSI, Paul Loeleben, Ed., MIT Press, Cambridge,
MA, March 1987, pp. 391-415.

LS] Dahy, William J. and Seitz, Charles L., " Deadlock-Free Message Routing in Multiprocessor In-
terconnection Networks," IEEE 7ansactions on Computers, Vol. C-36, No. 5, May 1987, pp.
547-553. 1 0

[9] Dally, William J. et.al., "Architecture of a Message-Driven .1rocessor," Proceedingj of the 14"
ACM/IEEE Symposium on Computer Architecture, June 1987, pp. 189-196..

[10] Daily, William J., and Song, Paul., "Design of a Self-Timed VLSI Multicomputer Communication
Controller," Proc. International Conference on Computer Design, ICCD-87, 1987, pp. 230-234.

[11] Dally, William J., "The J-Machine: System Support for Actors," Actors: Knowledge-Based Con-
current Computing, Hewitt and Agha eds., MIT Press, 1989.

[12] Dally, William J. et.al., Message-Driven Processor Architecture, Version 11 MIT Artificial Intelli-
gence Laboratory Memo No. 1069, August, 1988.

[13] Daily, William J. "Performance Analysis of k-ary n-cube lnterconnection Networks," IEEE Trans-
actions on Computers, to appear.

[14] Dally, W.J., "Fine-Grain Concurrent Computers", Proc. 3rd Symposium on Hypercube Concurrent
Computers and Applications, ACM 1988.

[151 Dally, W.J., and Chien A.A., "Object Oriented Concurrent Programming in CST," Proc. 3rd

Symposiun on Hypercube Concurrent Computers and Applications, ACM 1988.

[16] Dennis, Jack B., "Data Flow Supercomputers," IEEE Computer, Vol. 13, No. 11, Nov. 1980, pp.
48-56.

[17] Flaig, Charles, M., VLSI Mesh Routing Systems, Technical Report 5241:TR:87, Dept. of Computer
Science, California Institute of Technology, 1987.

[18] fHlstead, Robert H., "Parallel Symbolic Computation," IEEE Computer, Vol. 19, No. 8, Aug
1986, pp. 35-43.

[19] Iloare, C.A R., "Communicating Sequential Processes," Comm. ACM, Vol. 21, No. 8, August 1978.
pp. 666-677.

14

SOL, , •I

[20] Inmos Limited, IMS T424 Reference Manual, Order No. 72 TRN 006 00, Bristol, United Kingdom,
November 1984.

[21] Intel Scientific Computers, iPSC User's Guide, Order No. 175455-001, Santa Clara, CA, Aug.
1985.

[22] Lutz, C., et. al., "Design of the Mosaic Element," Proc. MIT Conference on Advanced Research
in VLSI, Artech Books, 1984, pp. 1-10.

[23] Palmer, John F., "The NCUBE Family of Parallel Supercomputers," Proc. IEEE International
Conference on Computer Design, ICCD-86, 1986, p. 107.

[24] Pfister, G.F. et. al., "The IBM Research Parallel Processor Prototype (RP3): Introduction and
Architecture", Proc. International Conference on Parallel Processing, ICPP, 1985, pp. 764-771.

[25] Seitz, Charles L., "The Cosmic Cube", Comm. ACM, Vol. 28, No. 1, Jan. 1985, pp. 22-33.

15

